
longitudinal forms realized in the shell in the zone adjacent to folds formed from the direc- 
tion of the immovable support. 

The good agreement can be seen in Fig. 2 of calculations and experiments for relation- 
ship N = N(t) up to quite large values of shell compression (=40%) with which the given fil- 
ler still does not have a marked effect on longitudinal force realized in the shell. The 
calculated nature of shape change for a cylindrical shell at different instants of time (after 
i00 ~sec) for test No. 4 is given in Fig. 3. By comparing Fig. 3 with Fig. 2f over time it 
is possible to note that the increase in N = N(t) up to a critical value is observed with 
deflections exceeding the shell thickness, and a drop is observed with intense fold forma- 
tion. 

Comparison of calculated results with experimental data shows quite good agreement both 
for residual shell shape (see Figs. ib, c and Fig. 3), and for the relationship N = N(t) (see 
Fig. 2), which points to the efficiency of the model suggested in describing shock compres- 
sion of cylindrical shells of moderate thickness (h/R = 1/10...I/5). 
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PLASTIC MODELS ~N PROBLEMS OF ELASTIC DEFORMATION OF ROLLED SHELLS 

S. V. Lavrikov and A. F. Revuzhenko UDC 539.3 

i. The questions considered in this work arose from the following considerations. We 
refer to classical solution of the Lam4 problem for a thick-walled cylindrical tube. In 
view of axial symmetry for the problem tangential stresses are absent: Or@ = 0 (r and @ are 
polar coordinates). This means that if an arbitrary number of cuts is made in the tube over the 
circumference r = const, then these cuts do not impinge on the operation of the structure. 
Consequently, the cross section of the tube may be represented by a collection of thin in- 
dividual rings mounted close to each other; rings operate so that conditions at contacts 
between them do not affect the operation of the whole structure. As is well known, in this 
scheme the material is loaded very unevenly, and if the external radius of the tube exceeds 
the internal radius by more than a factor of three to four then a further increase in tube 
thickness has practically no effect on the change over of the inner region into a plastic 
condition (failure). Therefore, an idea occurs naturally: is it possible to organize the 
work of elastic rings in such a way that external friction forces are mobilized between them 
which would Contribute to "resisting" external pressure. We cut up rings over a certain 
radius and glue them together with displacement by one pitch (Fig. i). The structure obtained 
differs in principle from the previous one. It might be expected that as a result of slippage 
of layers it will be possible to include in the operation material distant from the inner 
boundary, and consequently to distribute the applied load more uniformly thus incresing the 
supporting capacity of the structure. 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 153-159, May-June, 1988. Original article submitted March 18, 1987. 
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2. Let there be an elastic shell of constant thickness coiled into a roll (Fig. 1). 
It is assumed that the condition is natural. We take an individual element of the material 
including a certain number of layers of the roll. We do not yet consider the curvature of 
the contact line (Fig. 2). How does this element react to external loadings? It is evident 
that with compression in directions Ox z and Ox 2 in no way do discontinuities develop and 
element reaction will be elastic. Now let tangential stresses be applied, they give rise 
to elastic shear of material layers between discontinuities and in the general case to a 
certain amount of slippage at contacts. Thus, the field of velocities and displacements be- 
comes discontinuous, and on the whole element deformation (more accurately macrodeformation 
characterizing a change in angle ~ and sizes of elements in the directions OXl, Ox 2) consists 
of two parts: elastic, connected with elastic deformation of layers, and plastic, connected 
with slippage between them. Consequently, although shell material is ideally elastic, for 
analysis of its operation it is natural to use elastoplastic models, and those in which the es- 
sential features of the internal plastic deformation mechanism are considered: a discontin- 
uous nature of the original displacement field, presence of slippage only in one direction, 
etc. These models were developed in [1, 2] where it was shown that the original discontin- 
uous displacement field permits such smooth averaging that the strain tensor determined over 
the smoothed field characterizes macrodeformation, and in order to retain information about 
field discontinuities which is loss with averaging additional kinematic variables ~z2 and 
~2z are introduced having signifying dimensionless slippages. In order to determine the 
latter it is necessary to introduce internal rotation ~ characterizing rotation of material 
microelements totally contained within a layer. In the case of an element (see Fig. 2) the 
set of definitive equations is written in the form 

0wl  t -- ~ v Ow~ i -- v 

Ow ~ ff z~ Ow z v ,o  

= a~ 1 - -  ~ = - ~  + r ( c ~ ) ,  ~ = ~ + ~ = ~-/-~ ~1~ 

where p is shear modulus; ~ is Poisson's ratio; w I and w 2 are displacement vector components; 
F is a dimensionless value determining slippage. 

An equation was written in [i] on a coordinate system whose lines coincided with slip 
lines. In the problem of deformation for a rolled shell this system may be described as fol- 
lows. We take a circle of radius a and we draw tangent to it (Fig. 3). This circle is an 
envelope for a family of its tangents. Then from all of the points of the circle we draw 
spiral curves which at any point of the plane would be orthogonal to the straight line of the 
family of tangents corresponding to this point. Two reciprocally orthogonal families of lines 
are obtained, and it appears that distance h between neighboring turns of the same spiral is 
constant and equal to 2~a. 

Thus, in this case typical dimension h develops signifying the thickness of a layer of 
the shell. It should be noted that it is not necessary to consider h as a disappearing small 
value. This does not happen anywhere and it is not suggested. A changeover to averaging in 
an element of material signifies in fact that an elastic layer of the shell is a collection 
of disappearingly small elastic layers and total slippage between layers of thickness h is 
"spread" over the continuous element. It is also noted that in plotting distance h it is 
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measured along the normal to the spiral, i.e., along the straight line of a family of tan- 
gents, and not along the radius as in an Archimedes spiral. This means that if a sheet of 
thickness h is taken for any material and it is wound into a roll, then the separating lines 
for layers of the shell obtained in fact coincide with the plotted spiral line. 

Thus, coordinates of the grid have been plotted. We shall resolve the problem for an- 
nular region Ro<~r<~R, 0~0<2~ (see Fig. 3) and at internal boundary r = R 0 angle ~ be- 
tween a circle and the spiral is constant: 6 = arcsin (a/R0). Selection of an annular region 
means that in a real shell (see Fig. i) at the inner and outer boundaries with a changeover 
to circles part of the material is removed. Here a remarkable fact is noted: in a continuous 
arrangement the problem is axisymmetrical. 

We select the following parameterization of the coordinate grid constructed: 12 is angle 
between the corresponding straight line of a family of tangents and axis Oxz; ~i is length 
along a certain fixed line ~2 = const. It appears to be sufficient to parameterize only 
section [AB] in order that the required spiral is determined from its family in terms of 
number %z- This selection of parameters means that in fixed line k2 = const it is necessary 
to fulfill congruence conditions: points B(kz + h, %~) and C(~I, 12 + 2~) should coincide. 
Thus, transformation of polar coordinates (r, 0) to system (~i, ~2) has the form 

%x = ~ r2 _~2 _ ~(0 -- arcsin (L/r)) R O cos 6, %2 = 0 -- arcsin(~/~ (2. i) 

(~ = R 0 sin 6). Lam6 parameters for this substitution are: al = i, a s = %1 -~L ~%2 q- R0cos 6 

It is noted that the inclination angle • of spiral X2 to the circle is not constant and 

at each point of the plane it is determined by the relationship tan ~ =~--- a2 = ~ r ~  ~ .  Radius 

of curvature @ for spiral line %2 is also variable: @ = a2 = ~ f ~  From this it follows 
that with movement of the shell along a spiral path bending moments of stress arise which 
however it is possible to ignore if it assumed that the average radius of the tube (R + R0)/2 
is much greater than the thickness of a shell layer h [3, 4]. 

System (2.1) was selected so that line %2 coincides with lines separating layers of the 
rolled shell. Then according to [i] the closed set of equations takes the form 

 h-oh (2.2) 
a~--~ + - -  + - -  = 0, + - -  + -- = 0; 

a2a% 2 a 2 ~ a 2 0 ~  a s 

0w~O~l i--v~ o~i-- v 0 __aw~ +--w~=1--vo ~ --~o~I; (2.3) 
2~-U22 ~ a20~ 2 a 2 :2~- 2~ 

(2.4) 
a20~ ~ a s 

where index 0 s i g n i f i e s  p r o j e c t i on  on coord ina tes  ( ~ ,  ~ ) ;  (2.2)  is  an equi l ibr ium equation 
on curvilinear coordinates; (2.3) characterizes inelastic changes in the dimensions of an 
elementary volume in directions %z and ~2; (2.4) describes shear strain of an elementary 
volume. Function F signifies the dimensionless value for slippage of layers and it may 
clearly depend on coordinates X z and ~2. This points to the possibility of taking account 
of inhomogeneous conditions at the contact (nonuniform lubrication). We limit ourselves 
below only to the direct problem when function F is previously prescribed frnm experimental 
data for the nature of the contact reaction of layers. 

3. First we consider a rigorous statement of the problem when the shear modulus ~ + ~. 
In this case the shell is incompressible and inextendable, and the problem becomes kinemati- 
cally determinate. System (2.3) is hyperbolic and it requires two boundary conditions for 
displacements. Let 

= o,  = u ,  ( 3. z ) 

where U is a constant; %~ = X1(%2) = ~(]/(R/~) ~- i -- cot a %2), %~ =X,(%a) = V(RI~) ~ -- i cot 6 - -  

~/~ is external boundary of the region. This condition means that each point of the ex- 
ternal boundary shifts along spiral ~ by distance U. Then from system (2.3) taking account 
of (3.1) we obtain 

w~=O, w~=U. (3.2) 
From the condition y ~  = 0 it follows that ~ = U/a~. The results obtained point to the 
adequacy of the model constructed for real deformation of a rigid shell since this deformation 
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may be understood as movement of elements of this shell along a prescribed spiral path, and 
the rotation angle ~ for determination is the ratio of displacement U to radius of curvature 
of the path a 2. The results are illustrated in Figs. 4a, b (before the start of deformation 
the tube cross section is divided into parts by the diameter). 

After displacements are found, by referring to known function r in (2.4) we find tan- 
gential stresses 

~ h  = S ( ~ l ,  ~2)-  ( 3 . 3 )  

By s u b s t i t u t i n g  ( 3 . 3 )  in  ( 2 . 2 )  we o b t a i n  a s o l u t i o n  f o r  s t r e s s e s  i n  q u a d r a t u r e s :  

o ~ = - -  2S (~l, ~2) - -  a~ . d ~  + 11 (~i),' 
~ a~'1 (3.4) 

[fi(Xi) are arbitrary functions of integration]. For the boundaries we take the normal con- 
ditions of the form ~rlr=R0------p, or0lr=R0=0 , and by reprojecting them on axis (X l, X2) from 

(3.4) we find that functions fi(Xi) are determined from the relationships 

= - , tg8 + 

[~ Os('I' ~'2) J 'Jl" ---- ( ' p - - S ( ' & ~ , , ,  X,)tga)Ro.eos6 + T ~  dL, *,---~*, . 

+ + : 
�9 / . . . .  j~i=-~% 

Thus, by prescribing a specific form for conditions at the contact [function S(XI, X2)] 
we have a solution for the original rigorous problem in the form of (3.2)-(3.5). 

4. We consider the particular case of the original rigorous problem, when the condition 
at the contact corresponds to the condition of constancy for tangential stresses 

0 } 2 = -  T, T = const. (4.t) 
The system (3.4), (3.5), (4.1) gives the following stress distribution: 

0 o~=--p--Tctg6+2T~, ( T ~ = - - T .  

In projection on polar coordinates expression (4.2) is transformed to the form 
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( ~ o = - - p q - T  s  q- r  ,ffro--~--O. (4.3) 

From (4.3) it follows that if it is assumed that T = 0, i.e., slippage of layers occurs freely 
(o~= = 0), then the solution coincides with the hydrostatic solution. 

We consider the condition when all stresses occurring in a rolled tube do not exceed the 
elasticity limit for the material ~s, for example in the sense of the criterion 

(4.4) 

a 

Roarer \ V k ] )  
essentially on angle 6 (for the determination ~ = R0sin 6). It is clear that in order to 
improve the operation of the structure it is necessary to take such an angle 6 with which the 
value of T is at a maximum. All of the aforementioned conditions lead to the situation that 
the supporting capacity of a rolled shell with a condition at the contact (4.1) will be at a 

sense of criterion (4.4)] with 8=arcsin[R/(V~)] , and the limitation on maximum [in the 

T is transformed to the form T<2TsRoR/(R~ + R~), which by substituting in distribution (4.3) 
and requiring that at the outer boundary of the region pressure equals zero (in view of the 
hyperbolic nature of this system this is not possible with all values of p), we obtain a 
limitation on internal pressure p. 

Thus, the limiting pressure which the original shell may withstand without changing 
into a plastic condition (failure) with the condition at the contact (4.1) 

p* = 2~ (t -- 2R~/(R z + Rg)), (4.5) 
whereas in the Lam6 solution [5] at the inner boundary of the region a plastic zone first 
develops with the load 

p~ = T~ (i -- R~/R2). (4.6) 

By comparing expressions (4.5) and (4.6) we see that by allowing slippage in a thick-walled 
tube along spiral line A 2 with condition at the contact (4.1) it is possible to obtain a 
gain in supporting capacity compared with a one-piece tube by almost a factor of two. It is 
clear that this becomes possible as a result of more uniform redistribution of applied load 
over the thickness of the structure, i.e., as a result of involving in the operation layers 
of the rolled shell distant from the inner edge (Fig. 5). 

Now we prescribe some internal pressure P0 and require that the material deforms only 
elastically [criterion (4.4)]. For a rolled shell a markedly smaller thickness is required 

(Fig. 6). R2=R0]/~V 2-p0/~s ' than for a one-piece tube Rz=R0~I_~ 

5. We consider the original problem taking account of elastic deformation of the shell 
layers themselves (D < ~). As in the rigorous arrangement, we take the condition at the con- 
stant in the form of (4.1) (a condition for constancy of tangential stresses a~2). It is 
evident that stress distribution will coincide with the distribution in the rigorous case 
since the problem is statically determinate and stresses are independent of kinematics. Dis- 
placements differ from the rigorous case by a contribution of elastic deformation of the 
layers themselves. From system (2.3) taking account of (4.2) after integration we have 

, t - - 2 v ,  w ~ = ~ - - p - - T c t g 6 )  a~+t--3VT %~ t--~T~lna 2 +~z(~z), ~ - 2 ~  + --ff-  (5.1) 

= 2--7 - F  - 2~ 

[~i(ki) are arbitrary functions of integration]. If displacements of the outer shell bound- 
0 ary are prohibited w~I~,=x * = 0, w=l~==x2 = 0, then function #i(Ai) become constant and are deter- 

mined from the relationships 

A 2 t--v i-- 2V(p + Tctg6)A t-- 3v T ln(A), 
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~ 1  (%1) = C1 = C2 A i - -  2v T A  _ _  1 - -  v --=A 3 i - -  v T A  in  (A) 
2~ 2"~--- T 2~ + - - '~  (5.2)  

(A = 

Thus, express ions  (4 .2 ) ,  (5 .1 ) ,  (5.2) give a complete so lu t ion  for  the  e l a s t o p l a s t i c  
arrangement of the original problem with conditions at the contact (4.1). 

An approach has been considered for solving a class of elastic deformation problems for 
rolled shells based on using plastic models, and by plastic here we understand existence 
of slippage for layers of these shells. Analysis has been carried out for the stress -strain 
state of these structures. It appeared that as a result of the possibility of slippage of 
layers a rolled shell operates better than a one-piece thick-walled tube in the sense that 
it is possible to redistribute more uniformly the applied load through the thickness of the 
structure. In particular, if the condition at the contact is taken in the form of (4.1), 
then it is possible to obtain an advantage in supporting capacity by almost a factor of two 
compared with a one-piece tube. The model provided makes it possible to consider its gener- 
alization in a number of other models taking account for example of internal friction of the 
material, plastic deformation of the shell layers themselves, etc. 
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ANTIPLANAR PLASTIC FLOW 

S. I. Senashov UDC 539.374 

We will consider the equations describing nonsteady-state plastic flow of a Mises medium: 

Oui Oui Op Osij 

C~U 1 Ou 2 Ou 3 

(1) 

where u l, u2, u 3 are the components of the velocity vector, p is the hydrostatic pressure, 
X is a nonnegative function, sij are the components of the stress tensor deviator, k s is the 
yield point for pure shear, and repeating indices imply summation. 

We will assume that the medium is located under conditions of antiplanar plastic flow, 
so that the solution of Eq. (i) will be sought in the form [i] 

u 1 = 0 ,  u , = O ,  u~=w(x,  y, t ) , p = O .  (2) 

Substituting Eq. (2) in Eq. (i) we obtain an equation describing antiplanar plastic flow: 

Ow 0 Wx 0 Wy 

w x H- w u w~ 
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